IBM SPSS Web Report - 47var PC varimax 10 factors.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - January 28, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil
M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 L8a L8b L8c L8d L8f L8g L8h L8i L8j L8k L8l M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil
M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL ROTATION
  /PLOT EIGEN
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Active Dataset - January 28, 2020


[DataSet1] I:\Berge2009 Trust games\MLTSC HHQwithTrustData 20101201 L-M vars.sav

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Descriptive Statistics - January 28, 2020
Descriptive Statistics
  Mean Std. Deviation Analysis N
K1a Lending money to family members .44 .498 221
K1b Lending money to relatives .49 .501 221
K1c Lending money to people in your own village .39 .489 221
K1d Lending money to people outside the village .15 .357 221
K1e Lending money to people from the same mosque/ church .15 .362 221
K2a Lending tools like axes, hoes etc. to family members .72 .448 221
K2b Lending tools like axes, hoes etc. to relatives outside the household .77 .419 221
K2c Lending tools like axes, hoes etc. to people in your own village .65 .478 221
K2d Lending tools like axes, hoes etc. to people outside the village .24 .431 221
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .27 .446 221
L2 Participated in cooperative agricultural work .40 .491 221
L3.a. Participated last 12 months in cooperative work of preparing a garden .21 .407 221
L3.b. Participated last12 months in cooperative work of planting .07 .252 221
L3.c. Participated last 12 months in cooperative work of irrigating .02 .134 221
L3.d. Participated last 12 months in cooperative work of weeding .17 .374 221
L3.e. Participated last 12 months in cooperative work of harvesting .20 .400 221
L3.f. Participated last 12 months in cooperative work of other agriculture work .15 .357 221
L6 Participation in other exchange work than agriculture .52 .501 221
L7 Participated in unpaid public work during the last 12 months .79 .407 221
L8.a. Participated in school project over the last 12 months .49 .501 221
L8.b. Participated in road project over the last 12 months .54 .500 221
L8.c. Participated in bridge project over the last 12 months .28 .448 221
L8.d. Participated in church project over the last 12 months .27 .446 221
L8.f. Participated in kindergarten project over the last 12 months .05 .208 221
L8.g. Participated in health centre project over the last 12 months .14 .353 221
L8.h. Participated in irrigation project over the last 12 months .12 .328 221
L8.i. Participated in borehole project over the last 12 months .29 .452 221
L8.j. Participated in dam project over the last 12 months .02 .149 221
L8.k. Participated in graveyard clearing project over the last 12 months .42 .494 221
L8.l. Participated in other projects over the last 12 months .08 .274 221
M1 Most people can be trusted (1) or you cannot be too careful (0) .45 .498 221
M2.d. Trust in Traditional Authorities 3.76 1.159 221
M2.e. Trust in group village headmen 3.67 1.200 221
M2.f. Trust in village headmen 3.68 1.206 221
M2.j. Trust in police 3.63 1.289 221
M2.k. Trust in traders 2.46 1.295 221
M2.l. Trust in teachers 3.81 1.101 221
M2.m.Trust in school administrators 3.69 1.171 221
M2.n. Trust in religious leaders 3.88 1.114 221
M3.a. Trust in family members 4.38 .954 221
M3.b. Trust in relatives 3.85 1.158 221
M3.c. Trust in people in own village 3.33 1.097 221
M3.d. Trust in people outside the village 2.73 1.110 221
M3.e. Trust in people of same ethnic group 3.16 1.103 221
M3.f. Trust in people outside ethnic group 2.80 1.132 221
M3.g. Trust in people from same church/ mosque 3.59 1.056 221
M3.h. Trust in people not from same church/ mosque 3.00 1.200 221

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Communalities - January 28, 2020
Communalities
  Raw Rescaled
Initial Initial
K1a Lending money to family members .248 1.000
K1b Lending money to relatives .251 1.000
K1c Lending money to people in your own village .239 1.000
K1d Lending money to people outside the village .128 1.000
K1e Lending money to people from the same mosque/ church .131 1.000
K2a Lending tools like axes, hoes etc. to family members .201 1.000
K2b Lending tools like axes, hoes etc. to relatives outside the household .176 1.000
K2c Lending tools like axes, hoes etc. to people in your own village .228 1.000
K2d Lending tools like axes, hoes etc. to people outside the village .185 1.000
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .199 1.000
L2 Participated in cooperative agricultural work .241 1.000
L3.a. Participated last 12 months in cooperative work of preparing a garden .166 1.000
L3.b. Participated last12 months in cooperative work of planting .064 1.000
L3.c. Participated last 12 months in cooperative work of irrigating .018 1.000
L3.d. Participated last 12 months in cooperative work of weeding .140 1.000
L3.e. Participated last 12 months in cooperative work of harvesting .160 1.000
L3.f. Participated last 12 months in cooperative work of other agriculture work .128 1.000
L6 Participation in other exchange work than agriculture .251 1.000
L7 Participated in unpaid public work during the last 12 months .166 1.000
L8.a. Participated in school project over the last 12 months .251 1.000
L8.b. Participated in road project over the last 12 months .250 1.000
L8.c. Participated in bridge project over the last 12 months .201 1.000
L8.d. Participated in church project over the last 12 months .199 1.000
L8.f. Participated in kindergarten project over the last 12 months .043 1.000
L8.g. Participated in health centre project over the last 12 months .124 1.000
L8.h. Participated in irrigation project over the last 12 months .108 1.000
L8.i. Participated in borehole project over the last 12 months .205 1.000
L8.j. Participated in dam project over the last 12 months .022 1.000
L8.k. Participated in graveyard clearing project over the last 12 months .244 1.000
L8.l. Participated in other projects over the last 12 months .075 1.000
M1 Most people can be trusted (1) or you cannot be too careful (0) .248 1.000
M2.d. Trust in Traditional Authorities 1.344 1.000
M2.e. Trust in group village headmen 1.440 1.000
M2.f. Trust in village headmen 1.455 1.000
M2.j. Trust in police 1.661 1.000
M2.k. Trust in traders 1.677 1.000
M2.l. Trust in teachers 1.212 1.000
M2.m.Trust in school administrators 1.370 1.000
M2.n. Trust in religious leaders 1.241 1.000
M3.a. Trust in family members .910 1.000
M3.b. Trust in relatives 1.340 1.000
M3.c. Trust in people in own village 1.202 1.000
M3.d. Trust in people outside the village 1.233 1.000
M3.e. Trust in people of same ethnic group 1.216 1.000
M3.f. Trust in people outside ethnic group 1.281 1.000
M3.g. Trust in people from same church/ mosque 1.116 1.000
M3.h. Trust in people not from same church/ mosque 1.441 1.000
Extraction Method: Principal Component Analysis.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Total Variance Explained - January 28, 2020
Total Variance Explained
  Component Initial Eigenvaluesa Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.670 36.593 36.593 1.132 4.284 4.284
2 2.153 8.148 44.742 5.254 19.884 24.168
3 1.667 6.308 51.050 1.098 4.154 28.322
4 1.441 5.454 56.503 3.881 14.687 43.009
5 1.166 4.411 60.914 2.111 7.988 50.997
6 1.024 3.873 64.787 1.342 5.078 56.075
7 .923 3.494 68.281 1.641 6.208 62.283
8 .826 3.126 71.408 1.217 4.605 66.888
9 .724 2.740 74.147 1.123 4.248 71.136
10 .581 2.197 76.345 1.377 5.209 76.345
11 .546 2.067 78.412      
12 .507 1.920 80.332      
13 .473 1.788 82.120      
14 .447 1.693 83.814      
15 .397 1.502 85.316      
16 .361 1.364 86.680      
17 .352 1.330 88.011      
18 .301 1.140 89.151      
19 .280 1.058 90.209      
20 .269 1.019 91.229      
21 .228 .862 92.090      
22 .195 .736 92.826      
23 .183 .693 93.519      
24 .167 .633 94.152      
25 .150 .569 94.721      
26 .142 .537 95.258      
27 .123 .465 95.723      
28 .119 .451 96.174      
29 .099 .374 96.548      
30 .094 .356 96.903      
31 .086 .326 97.230      
32 .083 .315 97.545      
33 .077 .292 97.836      
34 .068 .258 98.094      
35 .063 .237 98.332      
36 .061 .233 98.564      
37 .057 .218 98.782      
38 .052 .196 98.978      
39 .047 .178 99.155      
40 .046 .173 99.329      
41 .041 .154 99.483      
42 .033 .124 99.607      
43 .028 .107 99.714      
44 .026 .100 99.814      
45 .023 .089 99.902      
46 .014 .054 99.956      
47 .012 .044 100.000      
Rescaled 1 9.670 36.593 36.593 5.001 10.640 10.640
2 2.153 8.148 44.742 4.410 9.384 20.024
3 1.667 6.308 51.050 3.084 6.563 26.587
4 1.441 5.454 56.503 3.035 6.457 33.043
5 1.166 4.411 60.914 1.778 3.784 36.827
6 1.024 3.873 64.787 1.401 2.980 39.808
7 .923 3.494 68.281 1.333 2.835 42.643
8 .826 3.126 71.408 1.168 2.484 45.127
9 .724 2.740 74.147 1.141 2.428 47.555
10 .581 2.197 76.345 1.105 2.350 49.905
11 .546 2.067 78.412      
12 .507 1.920 80.332      
13 .473 1.788 82.120      
14 .447 1.693 83.814      
15 .397 1.502 85.316      
16 .361 1.364 86.680      
17 .352 1.330 88.011      
18 .301 1.140 89.151      
19 .280 1.058 90.209      
20 .269 1.019 91.229      
21 .228 .862 92.090      
22 .195 .736 92.826      
23 .183 .693 93.519      
24 .167 .633 94.152      
25 .150 .569 94.721      
26 .142 .537 95.258      
27 .123 .465 95.723      
28 .119 .451 96.174      
29 .099 .374 96.548      
30 .094 .356 96.903      
31 .086 .326 97.230      
32 .083 .315 97.545      
33 .077 .292 97.836      
34 .068 .258 98.094      
35 .063 .237 98.332      
36 .061 .233 98.564      
37 .057 .218 98.782      
38 .052 .196 98.978      
39 .047 .178 99.155      
40 .046 .173 99.329      
41 .041 .154 99.483      
42 .033 .124 99.607      
43 .028 .107 99.714      
44 .026 .100 99.814      
45 .023 .089 99.902      
46 .014 .054 99.956      
47 .012 .044 100.000      
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.

Factor Analysis
Factor Analysis - Scree Plot - January 28, 2020
Scree Plot Component Number: 47
Eigenvalue: 0.0116 Component Number: 46
Eigenvalue: 0.0142 Component Number: 45
Eigenvalue: 0.0235 Component Number: 44
Eigenvalue: 0.0264 Component Number: 43
Eigenvalue: 0.0283 Component Number: 42
Eigenvalue: 0.0326 Component Number: 41
Eigenvalue: 0.0408 Component Number: 40
Eigenvalue: 0.0458 Component Number: 39
Eigenvalue: 0.0469 Component Number: 38
Eigenvalue: 0.0518 Component Number: 37
Eigenvalue: 0.0575 Component Number: 36
Eigenvalue: 0.0615 Component Number: 35
Eigenvalue: 0.0628 Component Number: 34
Eigenvalue: 0.0682 Component Number: 33
Eigenvalue: 0.0771 Component Number: 32
Eigenvalue: 0.0833 Component Number: 31
Eigenvalue: 0.0862 Component Number: 30
Eigenvalue: 0.0940 Component Number: 29
Eigenvalue: 0.0988 Component Number: 28
Eigenvalue: 0.1191 Component Number: 27
Eigenvalue: 0.1230 Component Number: 26
Eigenvalue: 0.1419 Component Number: 25
Eigenvalue: 0.1503 Component Number: 24
Eigenvalue: 0.1672 Component Number: 23
Eigenvalue: 0.1832 Component Number: 22
Eigenvalue: 0.1945 Component Number: 21
Eigenvalue: 0.2277 Component Number: 20
Eigenvalue: 0.2694 Component Number: 19
Eigenvalue: 0.2797 Component Number: 18
Eigenvalue: 0.3013 Component Number: 17
Eigenvalue: 0.3516 Component Number: 16
Eigenvalue: 0.3605 Component Number: 15
Eigenvalue: 0.3970 Component Number: 14
Eigenvalue: 0.4475 Component Number: 13
Eigenvalue: 0.4726 Component Number: 12
Eigenvalue: 0.5074 Component Number: 11
Eigenvalue: 0.5462 Component Number: 10
Eigenvalue: 0.5807 Component Number: 9
Eigenvalue: 0.7240 Component Number: 8
Eigenvalue: 0.8262 Component Number: 7
Eigenvalue: 0.9234 Component Number: 6
Eigenvalue: 1.0235 Component Number: 5
Eigenvalue: 1.1656 Component Number: 4
Eigenvalue: 1.4413 Component Number: 3
Eigenvalue: 1.6670 Component Number: 2
Eigenvalue: 2.1533 Component Number: 1
Eigenvalue: 9.6703 Component Number: 46
Eigenvalue: 0.0142 Component Number: 45
Eigenvalue: 0.0235 Component Number: 44
Eigenvalue: 0.0264 Component Number: 43
Eigenvalue: 0.0283 Component Number: 42
Eigenvalue: 0.0326 Component Number: 41
Eigenvalue: 0.0408 Component Number: 40
Eigenvalue: 0.0458 Component Number: 39
Eigenvalue: 0.0469 Component Number: 38
Eigenvalue: 0.0518 Component Number: 37
Eigenvalue: 0.0575 Component Number: 36
Eigenvalue: 0.0615 Component Number: 35
Eigenvalue: 0.0628 Component Number: 34
Eigenvalue: 0.0682 Component Number: 33
Eigenvalue: 0.0771 Component Number: 32
Eigenvalue: 0.0833 Component Number: 31
Eigenvalue: 0.0862 Component Number: 30
Eigenvalue: 0.0940 Component Number: 29
Eigenvalue: 0.0988 Component Number: 28
Eigenvalue: 0.1191 Component Number: 27
Eigenvalue: 0.1230 Component Number: 26
Eigenvalue: 0.1419 Component Number: 25
Eigenvalue: 0.1503 Component Number: 24
Eigenvalue: 0.1672 Component Number: 23
Eigenvalue: 0.1832 Component Number: 22
Eigenvalue: 0.1945 Component Number: 21
Eigenvalue: 0.2277 Component Number: 20
Eigenvalue: 0.2694 Component Number: 19
Eigenvalue: 0.2797 Component Number: 18
Eigenvalue: 0.3013 Component Number: 17
Eigenvalue: 0.3516 Component Number: 16
Eigenvalue: 0.3605 Component Number: 15
Eigenvalue: 0.3970 Component Number: 14
Eigenvalue: 0.4475 Component Number: 13
Eigenvalue: 0.4726 Component Number: 12
Eigenvalue: 0.5074 Component Number: 11
Eigenvalue: 0.5462 Component Number: 10
Eigenvalue: 0.5807 Component Number: 9
Eigenvalue: 0.7240 Component Number: 8
Eigenvalue: 0.8262 Component Number: 7
Eigenvalue: 0.9234 Component Number: 6
Eigenvalue: 1.0235 Component Number: 5
Eigenvalue: 1.1656 Component Number: 4
Eigenvalue: 1.4413 Component Number: 3
Eigenvalue: 1.6670 Component Number: 2
Eigenvalue: 2.1533 Component Number: 1
Eigenvalue: 9.6703 0 2 4 6 8 10 10 8 6 4 2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"a":0.0,"r":0,"b":0,"g":0}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":2.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":1.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.01164268156971316,"max":9.670268737370701,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.670268737370701],[1,2.153297637642993],[2,1.666951265060416],[3,1.441268496557174],[4,1.165558819212146],[5,1.023527970753916],[6,0.9233629298237546],[7,0.8261853466431135],[8,0.724010367455887],[9,0.5806746172424274],[10,0.5461824387346056],[11,0.507429735188486],[12,0.4726215784524338],[13,0.4474970752342113],[14,0.3970394401060308],[15,0.3605374029433688],[16,0.3515820530038959],[17,0.3012742057002927],[18,0.2797088942310776],[19,0.2693669701532069],[20,0.2276907959324941],[21,0.1945431387707282],[22,0.1831530185347113],[23,0.1672083269473193],[24,0.1502513318826815],[25,0.1418666650451942],[26,0.122974090133194],[27,0.1191372402058717],[28,0.09883058308873004],[29,0.09401336174536937],[30,0.08618988591893777],[31,0.08328958600875036],[32,0.07705700828741281],[33,0.06817608171736185],[34,0.06276082158674061],[35,0.06146197721662955],[36,0.05749826780480936],[37,0.0517638124350359],[38,0.04693660578678931],[39,0.04582224648781585],[40,0.04076892735713312],[41,0.03263756836768137],[42,0.02831011942713781],[43,0.02637006492625387],[44,0.02345463835969972],[45,0.0141717875075606],[46,0.01164268156971316]]}],"size":{"width":625.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Component Matrix - January 28, 2020
Component Matrixa
 
a.10 components extracted.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Rotated Component Matrix - January 28, 2020
Rotated Component Matrixa
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K1a Lending money to family members .296 -.039 -.074 .038 -.076 .036 -.103 .064 -.017 -.018 .594 -.079 -.149 .077 -.152 .072 -.207 .128 -.035 -.037
K1b Lending money to relatives .322 -.022 -.110 .039 -.082 .040 -.047 .046 -.027 -.019 .642 -.044 -.221 .077 -.164 .080 -.094 .092 -.054 -.038
K1c Lending money to people in your own village .322 -.011 -.104 .035 .002 .071 -.054 .006 .002 .000 .658 -.022 -.213 .072 .005 .146 -.111 .012 .005 -.001
K1d Lending money to people outside the village .183 .029 .010 -.009 -.005 -.002 .017 -.011 .033 -.001 .513 .080 .029 -.026 -.014 -.006 .047 -.030 .092 -.003
K1e Lending money to people from the same mosque/ church .161 -.029 .004 .019 -.007 .023 -.028 .031 .034 -.044 .446 -.081 .011 .052 -.019 .064 -.076 .086 .095 -.122
K2a Lending tools like axes, hoes etc. to family members .224 -.045 .020 -.037 -.041 -.033 -.089 .046 .003 -.038 .500 -.101 .044 -.083 -.092 -.074 -.199 .102 .007 -.086
K2b Lending tools like axes, hoes etc. to relatives outside the household .191 -.007 .002 -.060 .026 -.057 -.018 .002 -.030 -.020 .455 -.016 .004 -.143 .063 -.135 -.043 .005 -.071 -.048
K2c Lending tools like axes, hoes etc. to people in your own village .249 -.022 .085 -.013 .010 -.074 .017 -.031 .032 -.078 .522 -.045 .177 -.026 .020 -.156 .035 -.065 .067 -.164
K2d Lending tools like axes, hoes etc. to people outside the village .148 .001 .123 .036 .031 -.034 .034 -.080 .064 -.063 .344 .002 .285 .084 .071 -.079 .079 -.185 .149 -.146
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .142 -.004 .190 .047 .032 -.043 -.008 -.038 .033 -.144 .320 -.009 .425 .105 .071 -.097 -.018 -.085 .073 -.322
L2 Participated in cooperative agricultural work .310 .021 -.055 -.001 .023 -.003 .019 -.024 -.032 .049 .632 .043 -.112 -.001 .048 -.007 .039 -.049 -.066 .100
L3.a. Participated last 12 months in cooperative work of preparing a garden .193 .042 -.047 .023 -.004 .007 .044 -.054 .038 .001 .474 .103 -.114 .058 -.010 .018 .109 -.133 .094 .003
L3.b. Participated last12 months in cooperative work of planting .077 .027 .030 -.026 .014 .008 .021 .015 -.026 -.008 .305 .107 .120 -.104 .056 .032 .085 .061 -.102 -.031
L3.c. Participated last 12 months in cooperative work of irrigating .019 .003 .023 .014 .010 -.005 .011 -.011 -.007 .013 .140 .023 .173 .105 .073 -.039 .079 -.084 -.054 .097
L3.d. Participated last 12 months in cooperative work of weeding .199 -.002 .015 .014 .035 .016 .026 -.037 .005 .054 .533 -.006 .039 .037 .094 .043 .070 -.100 .012 .144
L3.e. Participated last 12 months in cooperative work of harvesting .191 .022 -.029 -.040 .034 .004 .009 .004 -.063 .060 .477 .054 -.072 -.100 .085 .009 .022 .010 -.157 .149
L3.f. Participated last 12 months in cooperative work of other agriculture work .161 .076 -.125 -.049 .020 .005 -.019 .040 -.022 -.003 .450 .212 -.351 -.137 .056 .015 -.053 .113 -.061 -.008
L6 Participation in other exchange work than agriculture .272 -.004 -.031 -.041 -.064 .007 -.058 .026 .002 .023 .544 -.008 -.063 -.082 -.127 .014 -.116 .053 .003 .046
L7 Participated in unpaid public work during the last 12 months -.182 -.084 .227 .031 .038 -.037 -.022 -.037 .021 -.003 -.447 -.207 .558 .077 .093 -.092 -.054 -.090 .050 -.008
L8.a. Participated in school project over the last 12 months -.018 -.043 .271 .068 .013 -.007 .027 .009 -.031 .012 -.036 -.085 .541 .137 .026 -.015 .053 .018 -.063 .024
L8.b. Participated in road project over the last 12 months -.073 -.003 .309 -.087 .019 .015 .018 -.005 .039 -.043 -.145 -.006 .618 -.173 .039 .029 .036 -.010 .078 -.086
L8.c. Participated in bridge project over the last 12 months -.002 -.035 .236 -.005 -.004 -.043 .016 -.010 .032 .040 -.005 -.079 .527 -.012 -.009 -.096 .036 -.021 .072 .089
L8.d. Participated in church project over the last 12 months -.039 .004 .195 -.030 .010 .046 .089 .016 -.083 -.013 -.088 .009 .436 -.068 .022 .103 .199 .036 -.186 -.030
L8.f. Participated in kindergarten project over the last 12 months -.008 .002 .034 -.013 .025 .004 .050 .008 -.016 -.004 -.038 .009 .164 -.062 .122 .017 .242 .039 -.075 -.022
L8.g. Participated in health centre project over the last 12 months -.021 -.009 .121 -.050 -.044 -.021 .018 .001 -.011 .006 -.058 -.026 .342 -.142 -.126 -.060 .051 .002 -.031 .016
L8.h. Participated in irrigation project over the last 12 months .024 .016 .126 -.026 .003 .029 -.044 .004 -.022 -.016 .073 .050 .383 -.079 .009 .090 -.134 .011 -.068 -.049
L8.i. Participated in borehole project over the last 12 months -.123 .023 .147 -.027 .016 -.013 .110 .106 -.082 -.035 -.272 .052 .325 -.060 .035 -.030 .243 .235 -.181 -.078
L8.j. Participated in dam project over the last 12 months -.022 .005 .020 .004 -.013 -.003 -.001 .008 -.013 .008 -.149 .035 .134 .030 -.085 -.023 -.006 .054 -.090 .056
L8.k. Participated in graveyard clearing project over the last 12 months -.117 -.006 .155 -.103 -.032 -.111 .023 .008 .103 -.044 -.236 -.012 .314 -.208 -.064 -.224 .047 .017 .208 -.090
L8.l. Participated in other projects over the last 12 months -.071 .040 -.031 -.005 .015 .048 -.009 -.049 .000 -.006 -.259 .147 -.115 -.018 .054 .173 -.033 -.179 .002 -.020
M1 Most people can be trusted (1) or you cannot be too careful (0) .106 .222 -.056 -.031 .011 .000 -.009 .044 .080 .052 .213 .445 -.112 -.062 .023 .000 -.018 .089 .160 .104
M2.d. Trust in Traditional Authorities -.101 .256 .067 1.034 .175 -.013 .015 .055 .088 .026 -.087 .221 .057 .892 .151 -.011 .013 .047 .076 .023
M2.e. Trust in group village headmen -.095 .320 -.182 1.042 .152 .097 .015 .003 .048 .130 -.079 .266 -.151 .868 .127 .081 .012 .003 .040 .109
M2.f. Trust in village headmen -.131 .279 -.376 .847 .317 .280 .132 .114 .153 .135 -.108 .231 -.311 .702 .262 .232 .110 .094 .127 .112
M2.j. Trust in police .029 .418 .012 .419 .262 .025 .183 .008 .110 1.083 .022 .324 .009 .325 .204 .020 .142 .006 .085 .841
M2.k. Trust in traders -.107 .340 .051 .264 .177 .027 1.162 .069 .147 .224 -.083 .263 .039 .204 .137 .021 .898 .054 .113 .173
M2.l. Trust in teachers -.133 .241 -.007 .346 .806 .213 .152 -.052 .201 .119 -.121 .219 -.007 .314 .732 .194 .138 -.047 .183 .108
M2.m.Trust in school administrators .011 .303 .067 .349 .941 .079 .246 .150 .074 .104 .010 .259 .058 .298 .804 .068 .210 .128 .063 .089
M2.n. Trust in religious leaders -.044 .353 -.149 .274 .301 .083 -.009 .149 .920 .063 -.040 .317 -.134 .246 .270 .075 -.008 .133 .826 .057
M3.a. Trust in family members .066 .277 -.247 .115 .236 .635 .069 .236 -.006 .013 .069 .290 -.259 .120 .248 .665 .072 .248 -.006 .014
M3.b. Trust in relatives .268 .449 -.058 .162 .128 .336 .165 .832 .156 .000 .232 .388 -.050 .140 .110 .290 .143 .719 .135 .000
M3.c. Trust in people in own village -.061 .713 -.040 .249 .148 .090 .087 .482 .179 .133 -.055 .650 -.036 .227 .135 .082 .080 .439 .163 .121
M3.d. Trust in people outside the village .040 .866 -.301 .112 .281 -.308 .081 .110 -.065 -.039 .036 .780 -.271 .101 .253 -.277 .073 .099 -.059 -.035
M3.e. Trust in people of same ethnic group -.097 .879 .055 .280 .069 .288 .002 .088 -.103 .086 -.088 .797 .050 .254 .062 .261 .002 .080 -.094 .078
M3.f. Trust in people outside ethnic group -.136 .956 -.171 .171 .024 .104 .134 .003 .077 .057 -.120 .845 -.151 .151 .021 .091 .119 .003 .068 .051
M3.g. Trust in people from same church/ mosque .029 .493 .356 .333 .098 .599 .011 .060 .180 .041 .028 .467 .337 .316 .093 .567 .010 .057 .170 .039
M3.h. Trust in people not from same church/ mosque .076 .948 .259 .254 .110 .283 .169 -.320 .025 .032 .063 .790 .216 .212 .091 .235 .141 -.266 .021 .027
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a.Rotation converged in 10 iterations.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Component Transformation Matrix - January 28, 2020
Component Transformation Matrix
Component 1 2 3 4 5 6 7 8 9 10
1 -.042 .655 -.059 .525 .339 .213 .210 .144 .168 .192
2 .230 .657 .028 -.583 -.285 .121 -.049 .168 -.115 -.188
3 .340 -.094 -.396 .314 -.109 .228 -.628 .300 .082 -.254
4 .306 -.289 -.146 -.353 .414 .121 .355 .517 .303 .069
5 -.233 -.084 .595 -.012 .204 .500 -.117 .017 .172 -.499
6 .528 -.147 .400 .161 -.275 .414 .102 -.043 -.231 .449
7 .303 .116 .128 -.234 .550 -.125 -.482 -.437 .147 .247
8 .379 -.005 -.084 .154 .338 -.096 .285 -.187 -.571 -.509
9 .408 .059 .262 .209 -.263 -.434 .179 -.105 .581 -.282
10 -.033 .041 .459 .112 .132 -.488 -.252 .595 -.303 .093
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.